Abstract

The NLFM waveform resulting from a tunable integrated optical ring resonator is simulated. The metrics of interest are the first sidelobe levels and FWHM times of the autocorrelation, as these directly relate to the long-range performance and fine range resolution of a LADAR system, and should ideally be as small as possible. Through simulation, the maximum sidelobe level of the autocorrelation of an NLFM waveform generated by a series of tunable integrated optical ring resonators is shown to be -20 to -30 dB or lower. A proof of concept experiment employing an off-the-shelf thermally tunable silicon-nitride optical ring resonator is shown to generate NLFM chirped waveforms with a bandwidth of 28 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.