Abstract
Many combinatorial problems in various fields can be translated to Maximum Satisfiability (MaxSAT) problems. Although the general problem is $\mathcal {N}\mathcal {P}$ -hard, more and more practical problems may be solved due to the significant effort which has been devoted to the development of efficient solvers. The art of constraints encoding is as important as the art of devising algorithms for MaxSAT. In this paper, we present several encoding methods of pseudo-Boolean constraints into Boolean satisfiability problems in Conjunctive Normal Form (CNF) formula, which are based on the idea of modular arithmetic and only generate auxiliary variables for each unique combination of weights. These techniques are efficient in encoding and solving MaxSAT problems. In particular, our solvers won the partial MaxSAT industrial category from 2010 through 2012 and ranked second in the 2017 main weighted track of the MaxSAT evaluation. We prove the correctness and the pseudo-polynomial space complexity of our encodings and also give a heuristics of the base selection for modular arithmetic. Our experimental results show that our encoding compactly encodes the constraints, and the obtained clauses are efficiently handled by a state-of-the-art SAT solver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.