Abstract

We have shown previously that two populations of myeloid cells emerge in the anterior and posterior ventral blood islands (aVBI and pVBI) at the different stages in Xenopus laevis embryo. In order to elucidate the regulatory mechanism of myeloid cell differentiation in the aVBI, we examined the role of Nkx2.5, an essential transcription factor for heart differentiation, in regulation of the myeloid cell differentiation in this region. Knockdown of endogenous Nkx2.5 by introducing MO into the dorsal marginal zone (DMZ) suppressed the expression of MHCα as well as that of mpo and spib in the resultant embryos and in DMZ explants made from the injected embryos. Expression of c/ebpα was less affected in the embryos injected with Nkx2.5 MO. The effect of Nkx2.5 MO in myeloid cell differentiation was recovered by coinjection of nkx2.5 or c/ebpα mRNA, indicating that Nkx2.5 functions at the same or the upper level of C/EBPα for the specification of myeloid cells. An attempt to identify transcription factors for myeloid cell differentiation in ventral marginal zone (VMZ) explants demonstrated that coinjection of two transcription factors out of three factors, namely C/EBPα, Nkx2.5 and GATA4, was sufficient to induce a certain amount of mpo expression. We suggest that C/EBPα is an unequivocal factor for myeloid cell differentiation in the aVBI and that Nkx2.5 and GATA4 cooperate with C/EBPα for promotion of myeloid cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.