Abstract

Homeobox genes encode transcription factors which regulate basic processes in development and cell differentiation. Several members of the NKL subclass are deregulated in T-cell progenitors and support leukemogenesis. We have recently described particular expression patterns of nine NKL homeobox genes in early hematopoiesis and T-cell development. Here, we screened NKL homeobox gene activities in normal B-cell development and extended the NKL-code to include this lymphoid lineage. Analysis of public expression profiling datasets revealed that HHEX and NKX6-3 were the only members differentially active in naïve B-cells, germinal center B-cells, plasma cells and memory B-cells. Subsequent examination of different types of B-cell malignancies showed both aberrant overexpression of NKL-code members and ectopic activation of subclass members physiologically silent in lymphopoiesis including BARX2, DLX1, EMX2, NKX2-1, NKX2-2 and NKX3-2. Based on these findings we performed detailed studies of the B-cell specific NKL homeobox gene NKX6-3 which showed enhanced activity in patient subsets of follicular lymphoma, mantle cell lymphoma and diffuse large B-cell lymphoma (DLBCL), and in three DLBCL cell lines to serve as in vitro models. While excluding genomic and chromosomal rearrangements at the locus of NKX6-3 (8p11) promoter studies demonstrated that B-cell factors MYB and PAX5 activated NKX6-3 transcription. Furthermore, aberrant BMP7/SMAD1-signalling and deregulated expression of chromatin complex components AUTS2 and PCGF5 promoted NKX6-3 activation. Finally, NKL homeobox genes HHEX, HLX, MSX1 and NKX6-3 were expressed in B-cell progenitors and generated a regulatory gene network in cell lines which we propose may provide physiological support for NKL-code formation in early B-cell development. Together, we identified an NKL-code in B-cell development whose violation may deregulate differentiation and promote malignant transformation.

Highlights

  • Hematopoietic stem cells (HSCs) generate common myeloid and lymphoid progenitor (CMP/ common lymphoid progenitor (CLP)) cells which, respectively, initiate the differentiation into myeloid and lymphoid cell lineages

  • The final differentiation steps to memory B-cells and plasma cells via naïve and germinal center (GC) B-cells occur in lymph nodes and in the spleen [1,2,3]

  • In contrast to mature T-cells, mature B-cells were positive for NKL homeobox gene activity, expressing either HHEX or NKX6-3

Read more

Summary

Introduction

Hematopoietic stem cells (HSCs) generate common myeloid and lymphoid progenitor (CMP/ CLP) cells which, respectively, initiate the differentiation into myeloid and lymphoid cell lineages. The latter produces all types of lymphocytes comprising B-cells, T-cells, and NK-cells. Several transcription factors (TFs) including PAX5, MYB, BCL6 and PRDM1/BLIMP1 generate a B-cell specific regulatory network controlling fundamental differentiation processes [5,6]. Deregulation of these TFs by chromosomal rearrangement or gene mutation contributes to the generation of B-cell malignancies [7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call