Abstract

Background: Chitosan can be modified to increase the efficiency of the delivery of chemical drugs, nucleic acids, or proteins. Sodium tripolyphosphate (TPP) is a noncytotoxic and polyanionic crosslinker that binds with the positively charged ions of chitosan. DsNKG2D-IL-15 is a fusion protein that exerts promising antitumor effects via lymphocyte activation. The extracellular domains of double NKG2D is linked to IL-15. Methods: To increase the stability and efficiency of dsNKG2D-IL-15 protein, the fusion protein was encapsulated in nanoparticles based on chitosan pre-modified with N-(2-hydroxy) propyl-3-trimethyl ammonium (HTCC). Moreover, the biological activity of protein nanoparticle was evaluated on the mouse lymphocyte ex vivo and mouse tumor model in vivo . Results: TPP sharply promoted the HTCC chitosan encapsulating efficiency (85–95%) with dsNKG2D-IL-15. The protein nanoparticle displayed a spherical shape with a diameter of 200–400 nm and zeta-potential value of 15.6±4.82 mV. DsNKG2D-IL-15 could be released from the nanogel within 72 h. In addition, the protein biological activity for lymphocyte activation was maintained. Natural killer (NK) and CD8 + T cells increased the activity of IFN-γ production and degranulation after incubation with the dsNKG2D-IL-15-HTCC-TPP nanoparticle ex vivo . Treatment with dsNKG2D-IL-15 nanoparticles exhibited better effects of inhibiting tumor growth and prolonging the life span of B16BL6-MICA tumor-bearing mice in vivo than by using the dsNKG2D-IL-15 protein alone. Conclusions: The dsNKG2D-IL-15 protein nanoparticle exhibited notable effects of lymphocyte activation and tumor inhibition. The protein nanoparticle could be developed further for tumor therapy in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call