Abstract
The uncertainties of the predicted load demand and N-K contingencies are very significant aspects to composite generation and transmission expansion planning (CGTEP). In this paper, multi-contingency constrained CGTEP with load uncertainty was analyzed from stringent mathematical view and formulated as a tri-level optimization model. To effectively solve the tri-level optimization, the entire problem is formulated as two problems using Benders’ decomposition: 1) master problem with expansion planning and 2) the sub-problem with the worst case load shedding. The sub-problem is a bi-level optimization problem which can be solved mathematically using strong duality theory and linearization method. CGTEP with the tri-level optimization can endure the disturbances of interval load and N-K contingencies. A benchmark test system is simulated to validate the effectiveness of the proposed approach. Furthermore, for Bender’s decomposition with many sub-problems of worst load shedding, the numerically comparable results of a special case demonstrate that all sub-problems of composite contingencies must be validated at each iteration even if certain contingency meets the standard of load shedding at the previous iteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.