Abstract

Investigations of deconfined quark matter within NJL-type models are reviewed, focusing on the regime of low temperatures and “moderate” densities, which is not accessible by perturbative QCD. Central issue is the interplay between chiral symmetry restoration and the formation of color superconducting phases. In order to lay a solid ground for this analysis, we begin with a rather detailed discussion of two- and three-flavor NJL models and their phase structure, neglecting the possibility of diquark pairing in a first step. An important aspect of this part is a comparison with the MIT bag model. The NJL model is also applied to investigate the possibility of absolutely stable strange quark matter. In the next step the formalism is extended to include diquark condensates. We discuss the role and mutual influence of several conventional and less conventional quark–antiquark and diquark condensates. As a particularly interesting example, we analyze a spin-1 diquark condensate as a possible pairing channel for those quarks which are left over from the standard spin-0 condensate. For three-flavor systems, we find that a self-consistent calculation of the strange quark mass, together with the diquark condensates, is crucial for a realistic description of the 2SC–CFL phase transition. We also study the effect of neutrality constraints which are of relevance for compact stars. Both, homogeneous and mixed, neutral phases are constructed. Although neutrality constraints generally tend to disfavor the 2SC phase we find that this phase is again stabilized by the large values of the dynamical strange quark mass which follow from the self-consistent treatment. Finally, we combine our solutions with existing hadronic equations of state to investigate the existence of quark matter cores in neutron stars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.