Abstract

A number of computational methods have been proposed recently to profile tumor microenvironment (TME) from bulk RNA data, and they have proved useful for understanding microenvironment differences among therapeutic response groups. However, these methods are not able to account for tumor proportion nor variable mRNA levels across cell types. In this article, we propose a Nonnegative Matrix Factorization-based Immune-TUmor MIcroenvironment Deconvolution (NITUMID) framework for TME profiling that addresses these limitations. It is designed to provide robust estimates of tumor and immune cells proportions simultaneously, while accommodating mRNA level differences across cell types. Through comprehensive simulations and real data analyses, we demonstrate that NITUMID not only can accurately estimate tumor fractions and cell types' mRNA levels, which are currently unavailable in other methods; it also outperforms most existing deconvolution methods in regular cell type profiling accuracy. Moreover, we show that NITUMID can more effectively detect clinical and prognostic signals from gene expression profiles in tumor than other methods. The algorithm is implemented in R. The source code can be downloaded at https://github.com/tdw1221/NITUMID. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.