Abstract

We study the Nitsche-based finite element method for contact with Coulomb friction considering both static and dynamic situations. We provide existence and/or uniqueness results for the discretized problems under appropriate assumptions on physical and numerical parameters. In the dynamic case, existence and uniqueness of the space semi-discrete problem holds for every value of the friction coefficient and the Nitsche parameter. In the static case, if the Nitsche parameter is large enough, existence is ensured for any friction coefficient, and uniqueness can be obtained provided that the friction coefficient is below a bound that depends on the mesh size. These results are complemented by a numerical study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.