Abstract

Nitric oxide (NO) is an important regulator of NMDA channel function in the CNS. Recent findings suggest that nitroxyl anion (NO(-)) may also be generated by nitric oxide synthase, which catalyzes production of NO. Using recombinant NMDA receptors (NMDA-r) transfected into human embryonic kidney cells, our data demonstrate that the nitroxyl anion donor, Angeli's salt (AS; Na(2)N(2)O(3)) dramatically blocked glycine-independent desensitization in NMDA-r containing NR1-NR2A subunits. AS did not affect glycine-dependent desensitization, calcium dependent inactivation or glutamate affinity for the NMDA-r. This effect could be mimicked by treatment with DPTA, a metal chelator and was not evident under hypoxic conditions. In contrast, receptors containing the NR1-NR2B subunits demonstrated an approximate 25% reduction in whole cell currents in the presence of AS with no apparent change in desensitization. Our data suggest that the regulation of NMDA-r function by nitroxyl anion is distinctly different from NO and may result in different cellular outcomes compared with NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.