Abstract

Cancer is a disease receiving an outstanding input of funds for basic and clinical research but is, nevertheless, still the second leading cause of death in the developed world and a great burden for health systems. New drugs are therefore needed to improve therapy, prolong survival of cancer patients and improve their quality of life. The high cost of development and clinical evaluation of new drugs limits the number that actually enter clinical use. To overcome this problem, repurposing of established drugs for new indications has gained a lot of interest, especially in the field of oncology. The well-established antimicrobial agent nitroxoline has been identified as a promising candidate to be repurposed for cancer treatment in several independent studies. Here we have reviewed a wide range of molecular mechanisms and tumor models involving nitroxoline in impairment of tumor progression. Furthermore, nitroxoline was used as a lead compound for structure-based chemical synthesis of new derivatives in order to improve its potency as well as selectivity for various targets. The potent antitumor activity of nitroxoline points strongly in the direction of its repurposing for cancer treatment and to the benefits of this strategy for patients and healthcare system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.