Abstract

Measurement of the distance between two spin label probes in proteins permits the spatial orientation of elements of defined secondary structure. By using site-directed spin labeling, it is possible to determine multiple distance constraints and thereby build tertiary and quaternary structural models as well as measure the kinetics of structural changes. New analytical methods for determining interprobe distances and relative orientations for uniquely oriented spin labels have been developed using global analysis of multifrequency electron paramagnetic resonance data. New methods have also been developed for determining interprobe distances for randomly oriented spin labels. These methods are being applied to a wide range of structural problems, including peptides, soluble proteins, and membrane proteins, that are not readily characterized by other structural techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.