Abstract

The dissolved oxygen (DO) concentration is known to be one of the most important factors affecting nitrous oxide (N2O) production, which might weaken the advantages of nitrogen removal in completely autotrophic nitrogen removal biofilm process. In this work, a mathematical model is applied to study the N2O production in a biofilm reactor performing nitritation followed by anaerobic ammonium oxidation (Anammox) for nitrogen removal. The nitrifier denitrification pathway through utilization of nitrite as the terminal electron acceptor under oxygen limiting conditions is used to predict N2O production. Simulations explicitly show that a large number of N2O is produced under conditions of low DO concentration for high nitrogen removal. A low ammonium concentration (<50mgNL−1) and a suitable DO level (at around 0.5mgO2L−1) could lead to high total nitrogen (TN) removal with a low N2O production. Biofilm has to be controlled to be in the optimal thickness (1000μm under the simulating conditions of this study), which allows relatively high TN removal, avoiding higher thickness that favors N2O production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.