Abstract
In man, use of the general anesthetic nitrous oxide, N2O, is associated with hematologic and neurologic abnormalities that mimic those seen in cobalamin (Cbl, vitamin B12) deficiency. We have measured a number of aspects of Cbl metabolism in rts exposed to various concentrations of N2O for various periods of time. As little as 2% N2O given for 15 h resulted in 30% inhibition of methionine synthetase (MS) in rat liver. With 50% N2O, inhibition of 70% occurred with 1 h and did not change during the next 48 h. Under these conditions, no inhibition of methylmalonyl-CoA mutase (MMCoAM) was observed. The recovery of MS activity was slow and was only 80% of control values 72 h after N2O was stopped. Studies employing rats previously injected with [57Co]Cbl showed that N2O displaced [57Co]Cbl from MS in a manner that temporally and quantitatively paralleled the loss of MS activity. Recovery of MS activity paralleled the reappearance of [57Co]Cbl on MS. N2O also caused the hepatic content of CH3-[57Co]Cbl to decrease by 20-60%. When [57Co]-Cbl was extracted from liver and analyzed by paper chromatography, [57Co]Cbl analogues were present (10-40% of total [57Co]Cbl) in rats exposed to N2O, but not in control animals. When rats were exposed to 50% N2O for 33 d, the total of endogenous Cbl and Cbl analogues in liver decreased to 35% of control values and endogenous Cbl decreased to 10% of control values. At this time, MS activity was 15% of control values and MMCoAM was only 26% of control values. We conclude that N2O causes multiple defects in Cbl metabolism that include the following: (a) rapid inhibition of MS activity with a slow recovery when N2O is stopped; (b) displacement of Cbl from MS; (c) decreased CH3-Cbl; (d) conversion of Cbl to Cbl analogues; (e) the gradual development of Cbl deficiency and (f) an eventual decrease in MMCoAM activity with a further decrease in MS activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.