Abstract

We investigated whether nitrous oxide can enhance the suppressive effect of propofol on spinal motor neuron excitability in humans. Sixteen adult patients were prospectively randomly assigned to be given either propofol alone (group P; n = 8) or a supplement of 66% nitrous oxide with propofol (group PN; n = 8) for intraoperative sedation. Propofol was administered by a target-controlled infusion system to maintain sequentially increasing plasma propofol concentrations (Cpt) of 0.5, 0.8, 1.0, 1.3, 1.5 and 1.8 microg x ml(-1) in all patients. Assessment of the patient's level of sedation in both groups was performed with the Wilson Sedation Scale (WSS). F-wave analysis on the left abductor pollicis brevis muscle was carried out for the assessment of spinal motor neuron excitability at each plasma propofol concentration. Significant differences in the WSS scores between group P and group PN were observed at 0.8, 1.0, 1.3, and 1.5 microg x ml(-1) of Cpt (group P < group PN; P < 0.01). Cpt greater than 1.0 microg x ml(-1) significantly reduced F-wave persistence in a concentration-dependent manner, and the ICpt 50 and ICpt 95 values for plasma propofol concentration (plasma propofol concentrations that produced 50% and 95% inhibition of the baseline, respectively) were 1.05 and 1.95 microg x ml(-1) in group P, and 1.07 and 2.14 microg x ml(-1) in group PN, respectively. These results suggest that nitrous oxide can enhance the hypnotic effect, but not the suppression of spinal motoneuron excitability by propofol in humans at clinical levels of Cpt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.