Abstract

The oxidation of alcohols with N2O as the hydrogen acceptor was achieved with low catalyst loadings of a rhodium complex that features a cooperative bis(olefin)amido ligand under mild conditions. Two different methods enable the formation of either the corresponding carboxylic acid or the ester. N2 and water are the only by-products. Mechanistic studies supported by DFT calculations suggest that the oxygen atom of N2O is transferred to the metal center by insertion into the Rh-H bond of a rhodium amino hydride species, generating a rhodium hydroxy complex as a key intermediate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.