Abstract

The neuronal nicotinic acetylcholine (nACh) receptor is one of the ligand-gated ion channels that regulate the synaptic release of neurotransmitters in the central nervous system. Recently, neuronal nACh receptors have received attention as a potential target for general anesthetics because many general anesthetics inhibit their functions at clinical concentrations. Several general anesthetics are known to inhibit the homomeric (alpha(7))(5) nACh receptor, a subtype of neuronal nACh receptors, but the effects of two gaseous anesthetics, nitrous oxide (N(2)O) and xenon (Xe), remain unknown. Using the two-electrode voltage-clamping technique, we investigated the effects of N(2)O and Xe at the human (alpha(7))(5) nACh receptor expressed in Xenopus oocytes. At clinically relevant concentrations, N(2)O and Xe reversibly inhibited the ACh-induced currents of the (alpha(7))(5) nACh receptor in a concentration-dependent manner. The inhibitory actions of both anesthetics at the (alpha(7))(5) nACh receptor were noncompetitive and voltage-independent. Our results suggest that inhibition of the (alpha(7))(5) nACh receptor by N(2)O and Xe may play a role in their anesthetic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.