Abstract

Basal levels of c-Src kinase are known to regulate smooth muscle Ca(2+) channels. Colonic inflammation results in attenuated Ca(2+) currents and muscle contraction. Here, we examined the regulation of calcium influx-dependent contractility by c-Src kinase in experimental colitis. Ca(2+)-influx induced contractions were measured by isometric tension recordings of mouse colonic longitudinal muscle strips depolarized by high K(+). The E(max) to CaCl(2) was significantly less in inflamed tissues (38.4 +/- 7.6%) than controls, indicative of reduced Ca(2+) influx. PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], a selective Src kinase inhibitor, significantly reduced the contractile amplitude and shifted the pD(2) from 3.88 to 2.44 in controls, whereas it was ineffective in inflamed tissues (3.66 versus 3.43). After pretreatment with a SIN-1 (3-morpholinosydnonimine)/peroxynitrite combination, the maximal contraction to CaCl(2) was reduced by 46 +/- 7% in controls but unaffected in inflamed tissues (13 +/- 11%). Peroxynitrite also prevented the inhibitory effect of PP2 in control tissues. In colonic single smooth muscle cells, PP2 inhibited Ca(2+) currents by 84.1 +/- 3.9% in normal but only 36.2 +/- 13% in inflamed tissues. Neither the Ca(2+) channel Ca(v)1.2b, gene expression, nor the c-Src kinase activity was altered by inflammation. Western blot analysis showed no change in the Ca(2+) channel protein expression but increased nitrotyrosylated-Ca(2+) channel proteins during inflammation. These data suggest that post-translational modification of Ca(2+) channels during inflammation, possibly nitrotyrosylation, prevents c-Src kinase regulation resulting in decreased Ca(2+) influx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.