Abstract
In this work, a novel electrochemical biosensor based on nitronyl nitroxide monoradical 2,2,6,6-tetramethylpiperidine 1-Oxyl (TEMPO) as new electrochemical label for facile nucleic acids detection is developed. This fast and convenient functional microelectrode was designed by fixing the capture probe peptide nucleic acid (PNA) and using the coordination interaction of Zr4+ with both phosphate groups and carboxyl groups. Differential pulse voltammetry (DPV) was used to study the oxidation current of TEMPO which was combined with the electrode surface and labeled. TEMPO electrochemical signal related to target deoxyribonucleic acid (tDNA) concentration was finally detected when tDNA was added on the surface of glassy carbon electrode (GCE). The detection principle, optimization of key factors and performance analysis of the biosensor are also discussed. A great linear relation is acquired within the scope of 10 pM–100 nM under optimal conditions and the detection limit of this experiment is calculated as low as 2.57 pM (R2 = 0.996). In addition, complex serum samples were used to explore the practical application of this experiment. The results show the developed electrochemical DNA biosensor has wide application prospects in nucleic acids detection and clinical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.