Abstract
In order to fully exploit the potential of magnetic biochar-based persulfate (PS) systems, N was utilized to modify the magnetic biochar-based catalysts through impregnation-pyrolysis method. A typical antifungal drug, metronidazole (MNZ), is selected as the target pollutant to score the reactivity of as-synthetic nitrogen-rich magnetic biochar (NMBC) catalysts. In the modified system, 99.6% of MNZ was removed, 13.6 times of that in the unmodified system. Active radical verification experiments showed that 1O2 was the key active radical. Various characterization showed that the nitrogen-rich significantly improved the persistent free radical, defect degree, content of oxygen-containing groups, electrochemical conductivity and other catalytic activity related properties. Physicochemical characterization, Fe(II) semi-quantitative analysis and masking experiments confirmed that the doping of magnetic biochar with nitrogen increased its Fe(II) content (23.79 mg/g), approximately 2.6 times higher than that of pristine magnetic biochar. Moreover, N induces strong electron accretion of Fe atom through coordination bond, which leads to the increase of electron density on the Fe atom, which increases the content of Fe (II) in the material, thus improving the ability of the material to activate PS to generate 1O2, and promoting the degradation reaction of MNZ. This paper provides a method to improve the activation performance of magnetic biochar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.