Abstract

High-efficiency explosives that combine high stability and excellent energy performance are one of the key directions of energetic materials research. In this study, a novel monocyclic hydroxytetrazole derivative (3) with high stability was prepared, and a series of insensitive energetic ionic salts were derived from it. Benefiting from their outstanding performance in terms of density, 3D hydrogen bonding and π-electron interactions, these salts are excellent in both detonation performance (D = 8709 to 9314 m s-1 and P = 29.9 to 35.6 GPa) and thermal stability (Td = 193.0-232.2 °C). The hydrazine salt (2) exhibits high detonation properties (D = 9314 m s-1 and P = 35.6 GPa), due to its high density (ρ = 1.71 g cm-3) and high heat of formation (ΔfH = 563.2 kJ mol-1 = 3.19 kJ g-1). In addition, the high thermal stability (Td = 232.0 °C) and low mechanical sensitivity (IS = 30 J and FS = 360 N) of 2 are also unmatched by HMX and TKX-50. These improved properties demonstrate the great promise of 2 as an insensitive high-energy explosive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call