Abstract
Because of the ongoing very challenging search for potential replacements of the currently used toxic lead-based primary explosives, new synthetic strategies have to be developed. In particular, the smart concept of energetic coordination compounds (ECC) has proven to hold great potential to solve this difficult and complex problem. The herein-described approach combines the exotic and neglected class of copper(II) bromate ECC with different environmentally friendly nitrogen-rich heterocycles, which exhibit the energetic properties of powerful primary explosives. The concept is the simple adjustment of the energetic properties of the complexes through alteration of the corresponding azoles. Six new copper(II) bromate complexes with reasonable sensitivities are featured in this study, which were synthesized in a practical and straightforward fashion, assured through easy access to copper(II) bromate obtained by metathesis reaction. Obtained compounds were comprehensively characterized through various analytical methods such as low-temperature X-ray diffraction, IR spectroscopy, and elemental analysis. Their sensitivities toward impact and friction were assessed through BAM standard techniques, together with their sensitivity against electrostatic discharge. Evaluation of the energetic properties of the newly synthesized compounds included examination of the respective thermal stabilities by differential thermal analysis. Furthermore, the complexes were tested regarding their behavior toward laser irradiation. Additionally, to receive insight into a possible correlation between the laser-investigated compounds' optical absorption and their ability to ignite by exposure to laser irradiation, UV-vis-near-IR spectra were recorded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.