Abstract

Rice grain-shaped, nitrogen-doped titanium dioxide (N-TiO2) nanostructures are synthesized using sol-gel method and followed by electrospinning. The as-spun composite fibers are sintered at 500 °C for 1 h in air. SEM images of the sintered samples showed rice grain-shaped nanostructures. The nanostructures were made up of spherical nanoparticles with average diameters of ∼ 20 nm, and the average diameter decreased with increase of N doping level. The temperature and frequency dependent electrical characterization has carried on nanostructures using impedance spectroscopy in the range of 298 K to 498 K and 30 Hz to 7 MHz, respectively. The magnitude of the ac conductivity is obtained from Nyquist plots and is proved that the ac conductivity is strongly dependent on temperature. The activation energy (Ea) is obtained from Arrhenius plots, and it is lowered from 0.31 to 0.22 eV with increasing N content. Therefore, the rice-grain shaped nanostructures can be employed in the low temperature gas sensor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call