Abstract

Composites of transition metal and carbon-based materials are promising bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and are widely used in rechargeable metal-air batteries. However, the mechanism of their enhanced bicatalytic activities remains elusive. Herein, we construct N-doped graphene supported by Co(111) and Fe(110) substrates as bifunctional catalysts for ORR and OER in alkaline media. First-principles calculations show that these heterostructures possess a large number of active sites for ORR and OER with overpotentials comparable to those of noble metal benchmark catalysts. The catalytic activity is modulated by the coupling strength between graphene and the metal substrates, as well as the charge distribution in the graphitic sheet, which is delicately mediated by N dopants. These theoretical results uncover the key parameters that govern the bicatalytic properties of hybrid materials and help prescribe the principles for designing multifunctional electrocatalysts of high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.