Abstract
Recently, new carbonization strategies for synthesizing structure-controlled and high-performance carbon electrode materials have attracted great attentions in the field of energy storage and conversion. Here a competitive carbonization-etching strategy to prepare nitrogen-doped carbon polyhedron@carbon nanosheet (NCP@CNS) hybrids derived from zeolitic imidazolate framework-8 is presented. Consecutive conductive networks are constructed in the NCP@CNS hybrids during a unique carbonization-etching pyrolysis, where a competition between the formation of NCPs and CNSs exists. When the NCP@CNS hybrids are employed as supercapacitor electrodes, their hierarchically porous NCPs serve as ion-buffering reservoirs for offering fast ion transport channels, and the CNSs within hybrids not only link the NCPs together to build electron transfer pathways but also restrict the volume fluctuation of electrodes during charging and discharging process. As a result, the as-fabricated NCP@CNS electrode displays excellent electrochemical performances including a superior specific capacitance of 320 F g-1 , a high energy density of 22.2 W h kg-1 (5.6 W h kg-1 for symmetric device), and a long cycle life with capacitance retention of ≈101.8% after 5000 cycles. This study opens an encouraging avenue toward the tailored synthesis of metal-organic frameworks (MOFs)-derived carbon electrodes for renewable energy storage applications and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.