Abstract

Ratiometric fluorescence sensor has high selectivity and good sensitivity; however, its development is limited by intricate design, tedious synthesis, etc. Herein, a facile and effective ratiometric fluorescence sensing platform for fluoride ion (F-) detection was developed by simply combining nitrogen-doped carbon dots (N-CDs) and morin-Al3+ based on inner filter effect (IFE). The competitive binding of F- to Al3+ obviously decreased morin-Al3+ fluorescence and increased N-CDs fluorescence, attributing to the inhibition of IFE between N-CDs and morin-Al3+. The as-constructed ratiometric fluorescence sensing platform can be used for F- detection with a wide linear range (0.5–150 μM) and a low detection limit (55.8 nM). Interestingly, with the introduction of F- into the N-CDs/morin-Al3+ sensing platform, a distinguishable change in fluorescence color from green to blue enabled the N-CDs/morin-Al3+ system to be used as a smartphone-assisted visual sensing platform for F- detection with a detection limit of 2.09 μM. This platform was successfully applied for the onsite monitoring of F- in various water samples with satisfying results. These findings provide a novel guidance for the facile construction of a ratiometric optical dual-mode and smartphone-assisted sensing platform based on CDs, revealing the broad application prospect of CDs in environmental monitoring field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call