Abstract

AbstractSoft carbon (SC) is a promising anode material for potassium‐ion hybrid capacitors (PIHCs), but there are limited K+ storage sites in common SC due to a skin‐like carbon film covering on the surface. To address this issue, a simple oxidization method to completely remove the skin‐like carbon film is reported and a novel accordion‐like architecture of SC (ASC) is constructed with a hierarchical porous framework composed of micropores, mesopores, and macropores, all of which can be exposed to K+ electrolytes for enhanced energy storage. Importantly, this exposed structure facilitates pseudocapacitance modification by electro‐deposition of highly electrochemically active nitrogen‐doped graphene quantum dots (N‐GQDs) to enhance kinetic performance and additional K+ storage. After annealing treatment to regulate N‐doping type, the accordion‐like N‐GQD@ASC‐500 exhibits excellent reversible capacity of 360 mAh g−1 as well as superior rate capability and cycle stability. Kinetic, in situ Raman/electrochemical impedance spectroscopy analysis, and density functional theory calculation elucidate the K+ storage mechanism. As expected, the PIHC assembled with N‐GQD@ASC‐500 anode and porous carbon cathode delivers an ultrahigh energy/power density (171 Wh kg−1 and 20 000 W kg−1) with long cycle life. This work suggests that ASC is a promising anode material for designing of high‐performance PIHCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.