Abstract

AbstractTransition metal nitrogen carbon based single‐atom catalysts (SACs) have exhibited superior activity and selectivity for CO2 electroreduction to CO. A favorable local nitrogen coordination environment is key to construct efficient metal‐N moieties. Here, a facile plasma‐assisted and nitrogen vacancy (NV) induced coordinative reconstruction strategy is reported for this purpose. Under continuous plasma striking, the preformed pentagon pyrrolic N‐defects around Ni sites can be transformed to a stable pyridinic N dominant Ni‐N2 coordination structure with promoted kinetics toward the CO2‐to‐CO conversion. Both the CO selectivity and productivity increase markedly after the reconstruction, reaching a high CO Faradaic efficiency of 96% at mild overpotential of 590 mV and a large CO current density of 33 mA cm‐2 at 890 mV. X‐ray adsorption spectroscopy and density functional theory (DFT) calculations reveal this defective local N environment decreases the restraint on central Ni atoms and provides enough space to facilitate the adsorption and activation of CO2 molecule, leading to a reduced energy barrier for CO2 reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.