Abstract

Environmental conditions influence the use of different nitrogen (N) sources by plants. We hypothesized that an increase in light intensity favors the use of nitrate (NO3 - ) relative to ammonium (NH4 + ) by seedlings of neotropical tree species from different functional groups, that is, Cecropia pachystachya (a shade-intolerant species), Cariniana estrellensis (a shade-tolerant canopy species), and Guarea kunthiana (a shade-tolerant understory species). We analyzed the growth and N metabolism in seedlings simultaneously provided with NH4 + and NO3 - , under lower (LL) and higher (HL) light intensity. 15 N incorporation into amino acids was monitored after incubation with 15 N-labeled NH4 + or NO3 - . Under HL, all species showed decreased leaf area ratio, and increased growth, nitrate reductase activity and assimilated N content. Cecropia pachystachya increased the use of both N sources under HL, with substantial increases in 15 N-amino acids derived from 15 NO3 - (12.5- and 4.0-fold in roots and leaves, respectively) and 15 NH4 + (4.5- and 3.0-fold in roots and leaves, respectively). Guarea kunthiana showed the greatest plasticity in N use, as the assimilation of 15 NO3 - in roots and leaves increased substantially under HL (11.2- and 17.0-fold, respectively). Cariniana estrellensis increased the assimilation of 15 NH4 + in roots and 15 NO3 - in leaves under HL. Therefore, the responses of N use strategies to light intensity varied with the species according to their ecological characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call