Abstract

• Here, the hypothesis was tested that nitrogen (N) translocation from older to younger parts of Sphagnum decreases as N inputs from atmospheric deposition increase. • Nitrogen translocation in Sphagnum mosses was compared in bogs with contrasting atmospheric N deposition (Adirondack - relatively high N deposition; Maine - relatively low) and by following the movement of a 15 NH4 15 NO3 tracer applied to plots of Sphagnum capillifolium over 2yr. • Annual N translocation ranged from 11% to >80% in the lower and higher influx sites, respectively. Nitrogen translocation was an important process for the N budget of the Sphagnum mosses, contributing 0.5-11% of the annual N requirements. These results suggest that N translocation is as important as direct N retention from atmospheric deposition for the N budget of the mosses. Contrary to expectations, N translocation was greater in the high (Adirondack) than in the low (Maine) deposition sites. • If N translocation is closely tied to water availability, the relative positions of the water tables in the sites over the course of the experiments might account for differences in N translocation among sites. The lower translocation (Maine) sites had lower water tables in the first year of the experiment and experienced a more severe drought in the second year than did the Adirondack sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.