Abstract

Measuring nitrogen (N) transformations from organic fertilizers can help in selecting applications rates that provide sufficient soluble N to promote tree growth in short-rotation plantations. The objective of this study was to determine how organic fertilizers (papermill biosolids, liquid pig slurry) affected microbially-mediated N transformations in soils. Soil samples were collected from a hybrid poplar plantation before fertilization, 1 month after fertilizer application and at the end of the growing season. Net N mineralization and nitrification were evaluated during a 28 d laboratory incubation, while gross N transformations were assessed using a 15N isotope dilution technique. Pig slurry application increased soil ammonium (NH4-N) and nitrate (NO3-N) concentrations within 1 month, while papermill biosolids increased soil NH4-N and NO3-N concentrations at the end of the growing season. Gross N consumption rates were greater than gross N production rates. The NH4-N and NO3-N consumption rates were positively correlated with labile carbon and microbial biomass. The gross nitrification rate was 18 to 67% of the gross mineralization rate but 30% or less of the gross NH4-N consumption rate, indicating that NH4 consumption was overestimated by the isotope dilution technique. We conclude that N cycling in this hybrid poplar plantation was characterized by rapid consumption of plant-available N following N mineralization and nitrification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call