Abstract
Polyyne, an sp1-hybridized linear allotrope of carbon, has a tunable quasiparticle energy gap, which depends on the terminated chemical ending groups as well as the chain length. Previously, nitrogen doping was utilized to tailor the properties of different kinds of allotrope of carbon. However, how the nitrogen doping tailors the properties of the polyyne remains unexplored. Here, we applied the GW method to study the quasiparticle energy gaps of the N-doped polyynes with different lengths. When a C atom is substituted by an N atom in a polyyne, the quasiparticle energy gap varies with the substituted position in the polyyne. The modification is particularly pronounced when the second-nearest-neighboring carbon atom of a hydrogen atom is substituted. In addition, the nitrogen doping makes the Fermi level closer to the lowest unoccupied molecular orbital, resulting in an n-type semiconductor. Our results suggest another route to tailor the electronic properties of polyyne in addition to the length of polyyne and the terminated chemical ending groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.