Abstract

Streptokinase is a well-established cost-effective therapeutic molecule for thrombo-embolic complications. In the current study, a tag-free variant of streptokinase with a native N-terminus (N-rSK) was developed using the Pichia expression system. A three-copy clone was screened that secreted 1062 mg/L of N-rSK in the complex medium at shake flask level. The biologically active (67,552.61 IU/mg) N-rSK recovered by anion exchange chromatography was predicted to contain 15.43% α-helices, 26.43% β-sheets. The fermentation run in a complex medium yielded a poor quality product due to excessive N-rSK degradation. Therefore, modified basal salt medium was also employed during fermentation operations to reduce the proteolytic processing of the recombinant product. The concomitant feeding of 1 g/L/h soya flour hydrolysate with methanol during the protein synthesis phase reduced the proteolysis and yielded 2.29 g/L of N-rSK. The fermentation medium was also supplemented with urea during growth and induction phases. The combined feeding approach of nitrogen-rich soya flour hydrolysate and urea during bioreactor operations showed significant improvement in protein stability and resulted in a 4-fold increase in N-rSK concentration to a level of 4.03 g/L over shake flask. Under optimized conditions, the volumetric productivity and specific product yield were 52.33 mg/L/h and 33.24 mg/g DCW, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.