Abstract

Nitrogen-containing analogs of chrysene, 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, were tested for mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes to investigate the effect of nitrogen-substitution. Although these DACs could not be converted to the bay-region diol epoxide because of their nitrogen atoms in the bay-region epoxide or diol moiety, DACs were mutagenic in the Ames test with rat liver S9. Both DACs also showed mutagenicity in the Ames test using pooled human liver microsomes, although chrysene itself was not mutagenic in the presence of pooled human liver microsomes. The mutagenicity of DACs (50 nmol/plate) in Ames tests using human liver microsome preparations from 10 individuals was compared with cytochrome P450 (CYP) activity in each microsome preparation to investigate the CYP isoform involved in the activation of DACs to the genotoxic forms. The numbers of induced revertants obtained by 1,10-DAC varied 6.2-folds (109–680) and those by 4,10-DAC 4.8-folds (155–751) among the 10 individuals. The number of induced revertants obtained by 1,10-DAC significantly correlated with the CYP1A2-selective catalytic activity ( r = 0.84, P < 0.01) in each microsome preparation. On the other hand, the number of induced revertants obtained by 4,10-DAC significantly correlated with the combined activity of CYP2A6 and 1A2 (CYP2A6 + 0.51 × CYP1A2; r = 0.75, P < 0.01). However, in Ames tests using microsomes from insect cells expressing various human CYP isoforms, the mutagenicity of 1,10-DAC was induced only by recombinant human CYP1A2, whereas both recombinant human CYP2A6 and 1A2 contributed to the mutagenicity of 4,10-DAC. These results suggest that 1,10-DAC shows the mutagenicity through involvement of CYP1A2 in human liver, and 4,10-DAC does so through both CYP2A6 and 1A2. In conclusion, our results suggested that the difference in the nitrogen-substituted position in the chrysene molecule might affect the mutagenic activity through influencing the ratio of participation of the metabolic activation enzyme isoforms of CYP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call