Abstract

Bench-grafted 'Fuji/M.26' apple (Malus domestica Borkh.) trees received a constant nitrogen (N) supply (10.7 mM) from bud break to the end of June, and were then fertigated with 0, 5, 10, 15 or 20 mM N in a modified Hoagland's solution for 2 months during the summer. In mid-October, half of the trees fertigated at each N concentration were sprayed twice with 3% urea, whereas the remaining trees served as controls. All trees were harvested after natural leaf fall and were stored at 2 degrees C. Five trees from each of the N treatment combinations were destructively sampled during dormancy to determine the composition of N and total nonstructural carbohydrates (TNC). As the N supply from fertigation increased, amounts of N in both free amino acids and proteins increased, whereas C/N ratios decreased. Foliar urea applications in the fall significantly increased amounts of N in both free amino acids and proteins, but decreased their C/N ratios. Arginine, the most abundant amino acid in both free amino acids and in proteins, accounted for an increasing proportion of N in free amino acids and proteins with increasing N supply from fertigation or foliar urea application. The ratio of protein N to free amino acid N decreased from about 27.1 to 3.2 as N supply from fertigation increased from 0 to 20 mM, and decreased further to 3.0 in response to foliar urea applications in the fall. Concentrations of glucose, fructose, sucrose and TNC decreased as the N supply from fertigation increased, whereas concentrations of sorbitol and starch remained relatively unchanged. Foliar urea applications decreased the concentration of each TNC component and the TNC concentration in each N fertigation treatment. A negative linear relationship was found between carbon in TNC and N in proteins and free amino acids. The sum of carbon in TNC, proteins and free amino acids remained constant in response to N supply from fertigation. However, foliar urea applications decreased the sum of carbon in proteins, free amino acids and TNC because about 21% of the decrease in TNC carbon was not recovered in free amino acids or proteins. Young apple trees store N and carbon dynamically in response to N supply. As N supply increases, an increasing proportion of N is found in the form of free amino acids, which have a low carbon cost, although proteins remain the main form of N storage. Furthermore, part of the carbon from TNC is incorporated into amino acids and proteins, decreasing the carbon stored as TNC and increasing the carbon stored as amino acids and proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.