Abstract
High nitrogen content in Spirulina platensis-derived bio-oil is a highly undesirable feature in upgrading of bio-oil to biofuel via hydrodeoxygenation. However, the nitrogen species could be potentially used as dopant for tailoring the catalytic behaviors of metallic sites in heterogeneous catalysts. In this study, the nitrogen species in the bio-oil from hydrothermal carbonization (HTC) of Spirulina platensis was used to modify Co-based catalyst for enhancing their catalytic activity for hydrogenation of o-chloronitrobenzene (o-CNB). The results showed that the introduction of N species not only promoted dispersion of Co particles via formation of Co–N sites, but also generated extra pores and significantly increased H2 uptake. The abundant Co–N sites, high dispersion of Co and higher surface area of N-doped catalyst (CoFeAl–N) jointly contributed to the enhanced catalytic activity for hydrogenation of o-CNB, achieving the yield of 90.3% for o-chloroaniline (o-CA) and lowering the activation energy from 63.0 kJ mol−1 (with N-free CoFeAl catalyst) to 55.1 kJ mol−1. The effectiveness of introducing nitrogen for enhancing catalytic activity for hydrogenation of o-CNB was also confirmed in the experiments for doping Co/Al2O3 (prepared via impregnation) and CoAl (prepared via co-precipitation) catalysts with the Spirulina platensis derived bio-oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.