Abstract
The nitrogen solubility and aluminum nitride formation in liquid Fe-Al, Fe-Cr-Al, Fe-18 pct Cr-8 pct Ni-Al and Fe-18 pct Cr-8 pct Ni-Mo-Al alloys were measured by the Sieverts' method. The temperature range extended from 1823 to 2073 K, and the aluminum contents from 1.01 to 3.85 wt pct Al. Increasing aluminum content increases the nitrogen solubility. The effect of molybdenum additions was determined for 2, 4 and 8 wt pct Mo levels. The first and second order effects of chromium, nickel, molybdenum and aluminum on the activity coefficient of nitrogen in iron were determined. The first and second order effects of chromium, nickel and molybdenum on the activity coefficient of aluminum also were determined. The nitride precipitates were identified as stoichiometric aluminum nitride, AIN, by X-ray diffraction analysis. The lattice spacing was in good agreement with the ASTM standard patterns for AIN in both higher and lower Al content solutions. The solubility product of AIN increases with increasing aluminum concentration and with temperature in liquid iron and the iron alloys studied. However, the magnitudes of the solubility products of AIN in those alloys are different because of the effects of chromium and nickel additions. Additions of molybdenum show little effect on the solubility product of AIN. The standard free energy of formation of AIN in liquid iron is: δG‡ = -245,990 + 107.59 \T J/g-molAIN, based on the standard state of the infinitely dilute solution in liquid iron for aluminum and nitrogen, referred to a hypothetical one wt pct solution, and on the pure compound for A1N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.