Abstract

The paper reports the findings of four years of pilot-scale research on nitrogen removal in fixed-bed biofilters fed on real raw municipal wastewater. The plant was made of two fixed-bed biofilm reactors in series with an intermediate settling tank from which excess biomass from the first stage was discharged. The first filter was used for carbon removal either with oxygen or nitrates. The second filter was used for nitrification. The average nitrification rate at 20°C was 0.84 gNH4+-N m−2d−1 with 5 mg I−1 dissolved oxygen in the bulk liquid. Temperature dependence was calculated (rn = rn.20° 1,05T−20). The influent organic load strongly affected ammonia oxidation. If the organic loading exceeded 2.5 gCOD m−2 d−1 nitrification rate was reduced by 50%. Denitrification was performed by recycling nitrates back from the second filter and by using sewage itself as carbon source. Denitrification rate showed to be strongly dependent on temperature (rd = rd.20° 1.11T−20) and on the recycle rate. Hydrolysis of the colloidal COD fraction showed a similar dependence on both temperature and recycle rate. Therefore, it has been concluded that the hydrolysis of finely dispersed COD particles can be the limiting step of denitrification in the biofilter when real sewage is used as carbon source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.