Abstract

This study is aimed to examine the removal of nitrogen from high strength slaughterhouse wastewater at 11°C via partial nitrification followed by denitrification (PND), using the intermittently aerated sequencing batch reactor (IASBR) technology. The slaughterhouse wastewater contained chemical oxygen demand (COD) of 6068 mg/L, total nitrogen (TN) of 571 mg/L, total phosphorus (TP) of 51 mg/L and suspended solids of 1.8 g/L, on average. The laboratory-scale IASBR reactors had a working volume of 8 L and was operated at an average organic loading rate of 0.61 g COD/(L·d). At the cycle duration of 12 h, COD was efficiently removed under three aeration rates of 0.4, 0.6 and 0.8 L air/min. Among the three aeration rates, the optimum aeration rate was 0.6 L air/min with removals of COD, TN, and TP of 98%, 98%, and 96%, respectively. The treated wastewater met the Irish emission standards. The microbial community analysis by fluorescence in situ hybridization shows 12±0.4% of ammonium oxidizing bacteria, and 7.2±0.4% of nitrite oxidizing bacteria in the general bacteria (EUB) in the activated sludge at the aeration rate of 0.6 L air/min, leading to efficient partial nitrification. PND effectively removed nitrogen from slaughterhouse wastewater at 11°C, but PND efficiency was dependent on the aeration rate applied. PND efficiencies were up to 75.8%, 70.1% and only 25.4% at the aeration rates of 0.4, 0.6, and 0.8 L air/min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call