Abstract

The main limiting factor in treatment of wastewater with a low carbon/nitrogen ratio is insufficient electron donors for aerobic denitrification. A novel synthetic micro-ecosystem (SM) with functional materials as the core structure was prepared to enhance nitrate removal during wastewater treatment. Nitrate removal in the reactors with SM increased by more than 40 % and reached 97.43 % under aerobic conditions. The abundance of denitrification functional genes in activated sludge increased by 2.7 folds after adding SM. Network analysis showed that the denitrifying bacterial community in the reactors with SM displayed a more abundant symbiotic structure. In the reactors with SM, bacteria with both denitrification and inorganic electron transfer capabilities (such as Paracoccus sp., Thaurea sp., and Achromobacter sp.) occupied dominant niche. A species abundance distribution model indicated more intense competition for the dominant niche for the denitrification community in the reactor with SM. Thus, SM promotes denitrification in polluted water bodies under aerobic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call