Abstract

This study assessed the technical feasibility to treat digested black water from vacuum toilets (> 1000 mg NH4(+)-N L(-1)) in a lab-scale oxygen-limited autotrophic nitrification/denitrification (OLAND) rotating biological contactor. After an adaptation period of 2.5 months, a stable nitrogen removal rate of ca. 700 mg N L(-1) d(-1) was reached over the subsequent 5 months. Suppression of the nitrite oxidizing bacteria at free ammonia levels above 3 mg N L(-1) resulted in a nitrogen removal efficiency of 76%. The favorable ratios of both organic and inorganic carbon to nitrogen guaranteed endured anammox activity and sufficient buffering capacity, respectively. Quantitative FISH showed that aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB) made up 43 and 8% of the biofilm, respectively. Since a part of the AerAOB was probably present in anoxic biofilm zones; their specific ammonium conversion was very low, in contrast to the high specific AnAOB activity. DGGE analysis showed that the dominant AerAOB and AnAOB species were resistant to the transition from synthetic medium to digested black water. This study demonstrates high-rate nitrogen removal from digested black water by one-stage partial nitritation and anammox, which will allow a significant decrease in operational costs compared to conventional nitrification/ denitrification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.