Abstract

Artificial intervention combined with stress acclimation was used to screen a heterotrophic nitrifying-aerobic denitrifying (HN-AD) bacterial, strain Rhodococcus SY24, resistant to linear alkylbenzenesulfonic acid (LAS) stress. When LAS was<15 mg/L, strain SY24 performed better cell growth and carbon source metabolism activity. The maximum nitrification and denitrification rates of SY24 under LAS stress could reach 1.18 mg/L/h and 1.05 mg/L/h, respectively, which were 13.80 % and 8.81 % higher than those of the original strain CPZ24. Higher LAS tolerance was seen in the functional genes (amoA, nxrA, napA, narG, nirK, nirS, norB, and nosZ). Response surface modeling revealed that 2 mg/L LAS, sodium succinate as a carbon source, 190 rams, and carbon/nitrogen 11 were the ideal culture conditions for SY24 to nitrogen removal under the LAS environment. This study offered a new screening strategy for the functional species, and strain SY24 showed significant LAS tolerance and HN-AD potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.