Abstract
The Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a two-stage process for nitrogen removal and resource recovery: in the first, ammonia is oxidized to nitrite in an aerobic bioreactor; in the second, oxidation of polyhydroxyalkanoate (PHA) drives reduction of nitrite to nitrous oxide (N2O) which is stripped for use as a biogas oxidant. Because ammonia oxidation is well-studied, tests of CANDO to date have focused on N2O production in anaerobic/anoxic sequencing batch reactors. In these reactors, nitrogen is provided as nitrite; PHA is produced from acetate or other dissolved COD, and PHA oxidation is coupled to N2O production from nitrite. In a pilot-scale study, N2O recovery was affected by COD/N ratio, total cycle time, and relative time periods for PHA synthesis and N2O production. In follow-up bench-scale studies, different reactor cycle times were used to investigate these operational parameters. Increasing COD/N ratio improved nitrite removal and increased biosolids concentration. Shortening the anaerobic phase prevented fermentation of PHA and improved its utilization. Efficient PHA synthesis and utilization in the anaerobic phase correlated with high N2O production in the anoxic phase. Shortening the anoxic phase prevented reduction of N2O to N2. By shortening both phases, total cycle time was reduced from 24 to 12 h. This optimized operation enabled increased biomass concentrations, increased N2O yields (from 71 to 87%), increased N loading rates (from 0.1 to 0.25 kg N/m3-d), and shorter hydraulic residence times (from 10 to 2 days). Long-term changes in operational performance for the different bioreactor systems tested were generally similar despite significant differences in microbial community structure. Long-term operation at short anaerobic phases selected for a glycogen-accumulating community dominated by a Defluviicoccus-related strain.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.