Abstract

Nitrogen plasma treatment was performed on fluorine-doped tin oxide (SnO2:F) front electrodes, and its impact on the performance of pin type amorphous Si (a-Si) solar cells was investigated. Nitrogen plasma treatment reverses the surface band bending of SnO2:F from accumulation to depletion, thus in turn reversing the band bending of the p type amorphous silicon carbide (p-a-SiC) window layer. The reversal of band bending leads to the collection of carriers generated in p-a-SiC, and quantum efficiency in the short wavelength regime is thereby enhanced. On the other hand, surface depletion of SnO2:F causes a reduction of the diode built-in voltage and increased series resistance, which could degrade the open circuit voltage (Voc) and fill factor (FF), the degradation of which is strongly affected by the deposition time of p-a-SiC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.