Abstract

Total nitrogen, phosphorus and organic carbon were compared in natural and transplanted estuarine marsh soils (top 30 cm) to assess nutrient storage in transplanted marshes. Soils were sampled in five transplanted marshes ranging in age from 1 to 15 yr and in five nearby natural marshes along the North Carolina coast. Dry weight of macroorganic matter (MOM), soil bulk density, pH, humic matter, and extractable P also were measured. Nutrient pools increased with increasing marsh age and hydroperiod. Nitrogen, phosphorus and organic carbon pools were largest in soils of irregularly flooded natural marshes. The contribution of MOM to marsh nutrient reservoirs was 6–45%, 2–22%, and 1–7% of the carbon, nitrogen and phosphorus, respectively. Rates of nutrient accumulation in transplanted marshes ranged from 2.6–10.0, 0.03–1.10, and 84–218 kmol ha−1yr−1 of nitrogen, phosphorus and organic carbon, respectively. Accumulation rates were greater in the irregularly flooded marshes compared to the regularly flooded marshes. Approximately 11 to 12% and 20% of the net primary production of emergent vegetation was buried in sediments of the regularly flooded and irregularly flooded transplanted marshes, respectively. Macroorganic matter nutrient pools develop rapidly in transplanted marshes and may approximate natural marshes within 15 to 30 yr. However, development of soil carbon, nitrogen and phosphorus reservoirs takes considerably longer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call