Abstract

Electrocatalysts are required for clean energy technologies (for example, water-splitting and metal-air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri-doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline-coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri-doping with N, P, and F, and simultaneously facilitates template-free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri-doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal-free catalyst was further used as an OER-HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water-splitting unit, which was powered by an integrated Zn-air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri-doped graphene multifunctional metal-free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s-1 for hydrogen and oxygen gas, respectively, showing great potential for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.