Abstract
The electronic and atomic structure of substitutional nitrogen pairs, triplets, and clusters in GaP and GaAs is studied using the multiband empirical pseudopotential method with atomistically relaxed supercells. A single nitrogen impurity creates a localized a1(N) gap state in GaP, but in GaAs, the state is resonant above the conduction-band minimum. We show how the interaction of multiple a1 impurity levels, for more than one nitrogen, results in a nonmonotonic relationship between energy level and impurity separation. We assign the lowest (NN1) line in GaP to a [2,2,0] oriented pair, the second (NN2) line to a triplet of nitrogen atoms, and identify the origin of a deeper observed level as an [1,1,0] oriented triplet. We also demonstrate that small nitrogen clusters readily create very deep levels in both GaP and GaAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.