Abstract

Nitrogen oxides exhaust gas assumes the important responsibility on air pollution by forming acid rain. This paper discusses the NO removal mechanism in 15 ns pulse dielectric barrier discharge (DBD) plasma through experimental and simulating method. Emission spectra collected from plasma are evaluated as sourced from N + and O (3 P ). The corresponding zero-dimensional model is established and verified through comparing the simulated concentration evolution and the experimental time-resolved spectra of N +. The electron impact ionization plays major role on NO removal and the produced NO + are further decomposed into N + and O (3 P ) through electron impact dissociative excitation rather than the usual reported dissociative recombination process. Simulation also indicates that the removal process can be accelerated by NO inputted at lower initial concentration or electrons streamed at higher concentration, due to the heightened electron impact probability on NO molecules. The repetitive pulse discharge is a benefit for improving the NO removal efficiency by effectively utilizing the radicals generated from the previous pulse under the condition that the pulse period should be shorter enough to ignore the spatial diffusion of radicals. Finally, slight attenuation on NO removal has been experimentally and simulatively observed after N 2 mixed, due to the competitive consumption of electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.