Abstract

In the present study, in addition to farmyard manure (FYM), cowpea was applied as green manure and faba bean as an intercrop in an organic greenhouse tomato crop, aiming to increase the levels of soil N. Three experiments (E1, E2, E3) were carried out, in which legumes were either noninoculated or inoculated with rhizobia alone or together with plant growth, promoting rhizobacteria. Inoculation of legumes with rhizobia considerably increased N2 fixation in E1 but had no impact on N2 fixation in E2 and E3. In E1, the application of cowpea decreased yield because it imposed a stronger nematode infection as the cowpea plants acted as a good host for Meloidogyne. However, in E2 and E3 the nematode infection was successfully controlled and the legumes significantly increased the tomato yield when inoculated in E2, irrespective of legume inoculation in E3. The total N concentration in the tomato plant tissues was significantly increased by legume application in E2 and E3, but not in E1. These results show that legumes applied as green manure can successfully complement N supply via FYM in organic greenhouse tomato, while legume inoculation with rhizobia can increase the amounts of nitrogen provided to the crop via green manure.

Highlights

  • Increased consumers awareness relating to food safety is one of the drivers that has led to an appreciable expansion of the agricultural land area treated according to organic farming practices in the last two decades

  • (%Ndfa) during the cultivation of cowpea used as green manure (E1 and E3) and faba bean used as intercrop (E2) is shown

  • The current study revealed that incorporation of cowpea as summer green manure in the soil in addition to farmyard manure (FYM) can increase both the total N and the nitrate concentrations in the soil, thereby resulting in higher fruit yield in organic tomato crops

Read more

Summary

Introduction

Increased consumers awareness relating to food safety is one of the drivers that has led to an appreciable expansion of the agricultural land area treated according to organic farming practices in the last two decades. This is clearly reflected in the increase of the total organically cultivated area worldwide, from 11 million hectares in 1999 to 69.8 million ha in 2017 [1]. Agronomy 2019, 9, 766 inorganic materials, such as bone meal, rock phosphate, potassium magnesium sulfate, and dolomitic lime, which are permitted as fertilizers in organic farming [3].

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.