Abstract

Nitrogen mustard (NM) is a chemotherapeutic agent capable of alkylating nucleophilic proteins and DNA, causing severe cell damage. However, no reports have been on the dynamic changes in proteomics induced by NM. In this study, we established a model of acute exposure to NM for 1 h and a continuous cultured model for 24 h after NM removal (repair stage) using 16HBE cells. The nuclear protein spectrum and nuclear proteins crosslinked with DNA were analyzed, and the function of p97 during NM damage was examined. An hour of NM exposure resulted in severe changes in the nuclear protein spectrum and protein into the cell nucleus, which is mainly involved in nuclear acid-related issues. After 24 h, the return to normal process of the types and amounts of differentially expressed proteins was inhibited by si-p97. The main processes involved in si-p97 intervention were nucleocytoplasmic transport, processing in the endoplasmic reticulum, metabolic abnormalities, and DNA-response; however. An hour of exposure to NM increased DNA-protein crosslinking (DPC), total-H2AX, and p-H2AX. In contrast, si-p97 only further increased or maintained their levels at 24 h yet not at 1 h. The effect of the proteasome inhibitor, MG132, was similar to that of si-p97. The siRNA of DVC1, a partner of p97, also increased the DPC content. Both si-p97 and si-DVC1 increased the cytoplasmic levels of the proteasome (PSMD2). These results suggest acute NM exposure induces severe nuclear protein spectral changes, rapid protein influx into the nucleus, DPC formation, and DNA double-strand breaks. Furthermore, our data indicated that p97 is involved in normal protein spectrum maintenance and DPC removal after NM withdrawal, requiring the participation of DVC1 and the proteasome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.